References
- (1) Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015.
- (2) J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants with deep learning–based sequence model,” Nat Methods, vol. 12, pp. 931–934, Aug. 2015.
- (3) B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the sequence specificities of dna- and rna-binding proteins by deep learning,” Nat Biotechnol, vol. 33, pp. 831–838, Jul 2015.
- (4) K. Jaganathan, S. K. Panagiotopoulou, J. F. McRae, S. F. Darbandi, D. Knowles, Y. I. Li, J. A. Kosmicki, J. Arbelaez, W. Cui, G. B. Schwartz, E. D. Chow, E. Kanterakis, H. Gao, A. Kia, S. Batzoglou, S. J. Sanders, and K. K.-H. Farh, “Predicting splicing from primary sequence with deep learning,” Cell, vol. 176, pp. 535–548.e24, Jan. 2019.
- (5) G. Eraslan, Ž. Avsec, J. Gagneur, and F. J. Theis, “Deep learning: new computational modelling techniques for genomics,” Nat Rev Genet, vol. 20, no. 7, pp. 389–403, 2019.
- (6) K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013.
- (7) A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through propagating activation differences,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, pp. 3145–3153, JMLR.org, 2017.
- (8) A. Chattopadhyay, P. Manupriya, A. Sarkar, and V. N. Balasubramanian, “Neural network attributions: A causal perspective,” arXiv preprint arXiv:1902.02302, 2019.
- (9) G. Ackers, A. Johnson, and M. Shea, “Quantitative model for gene regulation by lambda phage repressor,” Proc Natl Acad Sci USA, vol. 79, pp. 1129–1133, Feb. 1982.
- (10) M. A. Shea and G. K. Ackers, “The or control system of bacteriophage lambda. a physical-chemical model for gene regulation,” J Mol Biol, vol. 181, pp. 211–230, Jan. 1985.
- (11) L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, T. Kuhlman, and R. Phillips, “Transcriptional regulation by the numbers: applications,” Curr Opin Genet Dev, vol. 15, pp. 125–135, Apr. 2005.
- (12) L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, and R. Phillips, “Transcriptional regulation by the numbers: models,” Curr Opin Genet Dev, vol. 15, pp. 116–124, Apr. 2005.
- (13) E. Segal and J. Widom, “From dna sequence to transcriptional behaviour: a quantitative approach,” Nat Rev Genet, vol. 10, pp. 443–456, July 2009.
- (14) M. S. Sherman and B. A. Cohen, “Thermodynamic state ensemble models of cis-regulation,” PLoS Comput Biol, vol. 8, no. 3, p. e1002407, 2012.
- (15) J. Estrada, F. Wong, A. DePace, and J. Gunawardena, “Information integration and energy expenditure in gene regulation,” Cell, vol. 166, pp. 234–244, June 2016.
- (16) C. Scholes, A. H. DePace, and A. Sanchez, “Combinatorial gene regulation through kinetic control of the transcription cycle,” Cell Syst, vol. 4, pp. 97–108.e9, Jan. 2017.
- (17) J. Park, J. Estrada, G. Johnson, B. J. Vincent, C. Ricci-Tam, M. D. Bragdon, Y. Shulgina, A. Cha, Z. Wunderlich, J. Gunawardena, and A. H. DePace, “Dissecting the sharp response of a canonical developmental enhancer reveals multiple sources of cooperativity,” eLife, vol. 8, p. 2787, June 2019.
- (18) M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning,” in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283, 2016.
- (19) E. Mjolsness, “On cooperative quasi-equilibrium models of transcriptional regulation,” J Bioinform Comput Biol, vol. 5, no. 2b, pp. 467–490, 2007.
- (20) A. B. Rosenberg, R. P. Patwardhan, J. Shendure, and G. Seelig, “Learning the sequence determinants of alternative splicing from millions of random sequences,” Cell, vol. 163, pp. 698–711, Oct. 2015.
- (21) J. T. Cuperus, B. Groves, A. Kuchina, A. B. Rosenberg, N. Jojic, S. Fields, and G. Seelig, “Deep learning of the regulatory grammar of yeast 5’ untranslated regions from 500,000 random sequences,” Genome Res, vol. 27, no. 12, pp. 2015 – 2024, 2017.
- (22) R. Movva, P. Greenside, G. K. Marinov, S. Nair, A. Shrikumar, and A. Kundaje, “Deciphering regulatory dna sequences and noncoding genetic variants using neural network models of massively parallel reporter assays,” PLoS ONE, vol. 14, no. 6, p. e0218073, 2019.
- (23) P. J. Sample, B. Wang, D. W. Reid, V. Presnyak, I. J. McFadyen, D. R. Morris, and G. Seelig, “Human 5’ utr design and variant effect prediction from a massively parallel translation assay,” Nat Biotechnol, vol. 37, no. 7, pp. 803–809, 2019.
- (24) N. Bogard, J. Linder, A. B. Rosenberg, and G. Seelig, “A deep neural network for predicting and engineering alternative polyadenylation,” Cell, vol. 178, no. 1, pp. 91–106.e23, 2019.
- (25) R. P. Patwardhan, C. Lee, O. Litvin, D. L. Young, D. Pe’er, and J. Shendure, “High-resolution analysis of dna regulatory elements by synthetic saturation mutagenesis,” Nat Biotechnol, vol. 27, no. 12, pp. 1173 – 1175, 2009.
- (26) J. B. Kinney, A. Murugan, C. G. Callan, and E. C. Cox, “Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence,” Proc Natl Acad Sci USA, vol. 107, pp. 9158–9163, May 2010.
- (27) A. Melnikov, A. Murugan, X. Zhang, T. Tesileanu, L. Wang, P. Rogov, S. Feizi, A. Gnirke, C. G. Callan, J. B. Kinney, M. Kellis, E. S. Lander, and T. S. Mikkelsen, “Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay,” Nat Biotechnol, vol. 30, pp. 271–277, Feb. 2012.
- (28) J. C. Kwasnieski, I. Mogno, C. A. Myers, J. C. Corbo, and B. A. Cohen, “Complex effects of nucleotide variants in a mammalian cis-regulatory element,” Proc Natl Acad Sci USA, vol. 109, pp. 19498–19503, Nov. 2012.
- (29) R. P. Patwardhan, J. B. Hiatt, D. M. Witten, M. J. Kim, R. P. Smith, D. May, C. Lee, J. M. Andrie, S.-I. Lee, G. M. Cooper, N. Ahituv, L. A. Pennacchio, and J. Shendure, “Massively parallel functional dissection of mammalian enhancers in vivo,” Nat Biotechnol, vol. 30, no. 3, pp. 265 – 270, 2012.
- (30) Y. Liu, K. Barr, and J. Reinitz, “Fully interpretable deep learning model of transcriptional control,” bioRxiv preprint doi:10.1101/655639, May 2019.
- (31) C. G. d. Boer, E. D. Vaishnav, R. Sadeh, E. L. Abeyta, N. Friedman, and A. Regev, “Deciphering eukaryotic gene-regulatory logic with 100 million random promoters,” Nat Biotechnol, pp. 1–10, 2019.
- (32) A. Tareen and J. B. Kinney, “Logomaker: beautiful sequence logos in python,” Bioinformatics, Dec. 2019. btz921.
- (33) M. Razo-Mejia, J. Q. Boedicker, D. Jones, A. DeLuna, J. B. Kinney, and R. Phillips, “Comparison of the theoretical and real-world evolutionary potential of a genetic circuit,” Phys Biol, vol. 11, p. 026005, Apr. 2014.
- (34) N. M. Belliveau, S. L. Barnes, W. T. Ireland, D. L. Jones, M. J. Sweredoski, A. Moradian, S. Hess, J. B. Kinney, and R. Phillips, “Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria,” Proc Natl Acad Sci USA, vol. 115, pp. E4796–E4805, May 2018.
- (35) S. L. Barnes, N. M. Belliveau, W. T. Ireland, J. B. Kinney, and R. Phillips, “Mapping dna sequence to transcription factor binding energy in vivo,” PLoS Comput Biol, vol. 15, p. e1006226, Feb. 2019.
- (36) J. B. Kinney, G. Tkačik, and C. G. Callan, “Precise physical models of protein–DNA interaction from high-throughput data,” Proc Natl Acad Sci USA, vol. 104, pp. 501–506, Jan. 2007.
- (37) J. B. Kinney and G. S. Atwal, “Parametric inference in the large data limit using maximally informative models,” Neural Comput, vol. 26, pp. 637–653, Apr. 2014.
- (38) G. S. Atwal and J. B. Kinney, “Learning quantitative sequence–function relationships from massively parallel experiments,” J Stat Phys, vol. 162, no. 5, pp. 1203–1243, 2016.
- (39) W. R. McClure, “Rate-limiting steps in rna chain initiation,” Proc Natl Acad Sci USA, vol. 77, no. 10, pp. 5634 – 5638, 1980.
- (40) W. R. McClure, “Mechanism and control of transcription initiation in prokaryotes,” Annu Rev Biochem, vol. 54, no. 1, pp. 171 – 204, 1985.
- (41) E. King and C. Altman, “A schematic method of deriving the rate laws for enzyme-catalyzed reactions,” J Phys Chem, vol. 60, no. 10, pp. 1375–1378, 1956.
- (42) T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics. New York: Springer-Verlag, 1989.