Bidding via Clustering Ads Intentions: an Efficient Search Engine Marketing System for E-commerce

06/24/2021 ∙ by Cheng Jie, et al. ∙ 0

With the increasing scale of search engine marketing, designing an efficient bidding system is becoming paramount for the success of e-commerce companies. The critical challenges faced by a modern industrial-level bidding system include: 1. the catalog is enormous, and the relevant bidding features are of high sparsity; 2. the large volume of bidding requests induces significant computation burden to both the offline and online serving. Leveraging extraneous user-item information proves essential to mitigate the sparsity issue, for which we exploit the natural language signals from the users' query and the contextual knowledge from the products. In particular, we extract the vector representations of ads via the Transformer model and leverage their geometric relation to building collaborative bidding predictions via clustering. The two-step procedure also significantly reduces the computation stress of bid evaluation and optimization. In this paper, we introduce the end-to-end structure of the bidding system for search engine marketing for Walmart e-commerce, which successfully handles tens of millions of bids each day. We analyze the online and offline performances of our approach and discuss how we find it as a production-efficient solution.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.