Bi-orthogonal fPINN: A physics-informed neural network method for solving time-dependent stochastic fractional PDEs

03/20/2023
by   Lei Ma, et al.
0

Fractional partial differential equations (FPDEs) can effectively represent anomalous transport and nonlocal interactions. However, inherent uncertainties arise naturally in real applications due to random forcing or unknown material properties. Mathematical models considering nonlocal interactions with uncertainty quantification can be formulated as stochastic fractional partial differential equations (SFPDEs). There are many challenges in solving SFPDEs numerically, especially for long-time integration since such problems are high-dimensional and nonlocal. Here, we combine the bi-orthogonal (BO) method for representing stochastic processes with physics-informed neural networks (PINNs) for solving partial differential equations to formulate the bi-orthogonal PINN method (BO-fPINN) for solving time-dependent SFPDEs. Specifically, we introduce a deep neural network for the stochastic solution of the time-dependent SFPDEs, and include the BO constraints in the loss function following a weak formulation. Since automatic differentiation is not currently applicable to fractional derivatives, we employ discretization on a grid to to compute the fractional derivatives of the neural network output. The weak formulation loss function of the BO-fPINN method can overcome some drawbacks of the BO methods and thus can be used to solve SFPDEs with eigenvalue crossings. Moreover, the BO-fPINN method can be used for inverse SFPDEs with the same framework and same computational complexity as for forward problems. We demonstrate the effectiveness of the BO-fPINN method for different benchmark problems. The results demonstrate the flexibility and efficiency of the proposed method, especially for inverse problems.

READ FULL TEXT

page 24

page 25

research
05/03/2019

Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks

One of the open problems in scientific computing is the long-time integr...
research
03/16/2022

Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations

We introduce a sampling based machine learning approach, Monte Carlo phy...
research
04/03/2023

Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion

The use of Physics-informed neural networks (PINNs) has shown promise in...
research
08/25/2020

A fractional stochastic theory for interfacial polarization of cell aggregates

We present a theoretical framework to model the electric response of cel...
research
07/10/2019

DeepXDE: A deep learning library for solving differential equations

Deep learning has achieved remarkable success in diverse applications; h...
research
10/19/2022

A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency

Physics-informed neural networks (PINNs) have been widely applied in dif...

Please sign up or login with your details

Forgot password? Click here to reset