Beyond Greedy Search: Tracking by Multi-Agent Reinforcement Learning-based Beam Search

05/19/2022
by   Xiao Wang, et al.
11

Existing trackers usually select a location or proposal with the maximum score as tracking result for each frame. However, such greedy search scheme maybe not the optimal choice, especially when encountering challenging tracking scenarios like heavy occlusions and fast motion. Since the accumulated errors would make response scores not reliable anymore. In this paper, we propose a novel multi-agent reinforcement learning based beam search strategy (termed BeamTracking) to address this issue. Specifically, we formulate the tracking as a sample selection problem fulfilled by multiple parallel decision-making processes, each of which aims at picking out one sample as their tracking result in each frame. We take the target feature, proposal feature, and its response score as state, and also consider actions predicted by nearby agent, to train multi-agents to select their actions. When all the frames are processed, we select the trajectory with the maximum accumulated score as the tracking result. Extensive experiments on seven popular tracking benchmark datasets validated the effectiveness of the proposed algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset