Better Bunching, Nicer Notching

01/04/2021
by   Marinho Bertanha, et al.
0

We study the bunching identification strategy for an elasticity parameter that summarizes agents' response to changes in slope (kink) or intercept (notch) of a schedule of incentives. A notch identifies the elasticity but a kink does not, when the distribution of agents is fully flexible. We propose new non-parametric and semi-parametric identification assumptions on the distribution of agents that are weaker than assumptions currently made in the literature. We revisit the original empirical application of the bunching estimator and find that our weaker identification assumptions result in meaningfully different estimates. We provide the Stata package "bunching" to implement our procedures.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro