BETS: The dangers of selection bias in early analyses of the coronavirus disease (COVID-19) pandemic
The coronavirus disease 2019 (COVID-19) has quickly grown from a regional outbreak in Wuhan, China to a global pandemic. Early estimates of the epidemic growth and incubation period of COVID-19 may have been severely biased due to sample selection. Using detailed case reports from 14 locations in and outside mainland China, we obtained 378 Wuhan-exported cases who left Wuhan before an abrupt travel quarantine. We developed a generative model we call BETS for four key epidemiological events—Beginning of exposure, End of exposure, time of Transmission, and time of Symptom onset (BETS)—and derived explicit formulas to correct for the sample selection. We gave a detailed illustration of why some early and highly influential analyses of the COVID-19 pandemic were severely biased. All our analyses, regardless of which subsample and model were being used, point to an epidemic doubling time of 2 to 2.5 days during the early outbreak in Wuhan. A Bayesian nonparametric analysis further suggests that 5 infection.
READ FULL TEXT