Bethe-ADMM for Tree Decomposition based Parallel MAP Inference

09/26/2013
by   Qiang Fu, et al.
0

We consider the problem of maximum a posteriori (MAP) inference in discrete graphical models. We present a parallel MAP inference algorithm called Bethe-ADMM based on two ideas: tree-decomposition of the graph and the alternating direction method of multipliers (ADMM). However, unlike the standard ADMM, we use an inexact ADMM augmented with a Bethe-divergence based proximal function, which makes each subproblem in ADMM easy to solve in parallel using the sum-product algorithm. We rigorously prove global convergence of Bethe-ADMM. The proposed algorithm is extensively evaluated on both synthetic and real datasets to illustrate its effectiveness. Further, the parallel Bethe-ADMM is shown to scale almost linearly with increasing number of cores.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset