BeSS: An R Package for Best Subset Selection in Linear, Logistic and CoxPH Models

09/19/2017
by   Canhong Wen, et al.
0

We introduce a new R package, BeSS, for solving the best subset selection problem in linear, logistic and Cox's proportional hazard (CoxPH) models. It utilizes a highly efficient active set algorithm based on primal and dual variables, and supports sequential and golden search strategies for best subset selection. We provide a C++ implementation of the algorithm using Rcpp interface. We demonstrate through numerical experiments based on enormous simulation and real datasets that the new BeSS package has competitive performance compared to other R packages for best subset selection purpose.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro