Benchmarking Neural Machine Translation for Southern African Languages

06/17/2019
by   Laura Martinus, et al.
0

Unlike major Western languages, most African languages are very low-resourced. Furthermore, the resources that do exist are often scattered and difficult to obtain and discover. As a result, the data and code for existing research has rarely been shared. This has lead a struggle to reproduce reported results, and few publicly available benchmarks for African machine translation models exist. To start to address these problems, we trained neural machine translation models for 5 Southern African languages on publicly-available datasets. Code is provided for training the models and evaluate the models on a newly released evaluation set, with the aim of spur future research in the field for Southern African languages.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro