Being a Bit Frequentist Improves Bayesian Neural Networks

06/18/2021 ∙ by Agustinus Kristiadi, et al. ∙ 0

Despite their compelling theoretical properties, Bayesian neural networks (BNNs) tend to perform worse than frequentist methods in classification-based uncertainty quantification (UQ) tasks such as out-of-distribution (OOD) detection and dataset-shift robustness. In this work, based on empirical findings in prior works, we hypothesize that this issue is due to the avoidance of Bayesian methods in the so-called "OOD training" – a family of techniques for incorporating OOD data during training process, which has since been an integral part of state-of-the-art frequentist UQ methods. To validate this, we treat OOD data as a first-class citizen in BNN training by exploring four different ways of incorporating OOD data in Bayesian inference. We show in extensive experiments that OOD-trained BNNs are competitive to, if not better than recent frequentist baselines. This work thus provides strong baselines for future work in both Bayesian and frequentist UQ.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.