Be Prepared When Network Goes Bad: An Asynchronous View-Change Protocol

03/04/2021 ∙ by Rati Gelashvili, et al. ∙ 0

The popularity of permissioned blockchain systems demands BFT SMR protocols that are efficient under good network conditions (synchrony) and robust under bad network conditions (asynchrony). The state-of-the-art partially synchronous BFT SMR protocols provide optimal linear communication cost per decision under synchrony and good leaders, but lose liveness under asynchrony. On the other hand, the state-of-the-art asynchronous BFT SMR protocols are live even under asynchrony, but always pay quadratic cost even under synchrony. In this paper, we propose a BFT SMR protocol that achieves the best of both worlds – optimal linear cost per decision under good networks and leaders, optimal quadratic cost per decision under bad networks, and remains always live.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.