Bayesian Updating of Seismic Ground Failure Estimates via Causal Graphical Models and Satellite Imagery
Earthquake-induced secondary ground failure hazards, such as liquefaction and landslides, result in catastrophic building and infrastructure damage as well as human fatalities. To facilitate emergency responses and mitigate losses, the U.S. Geological Survey provides a rapid hazard estimation system for earthquake-triggered landslides and liquefaction using geospatial susceptibility proxies and ShakeMap ground motion estimates. In this study, we develop a generalized causal graph-based Bayesian network that models the physical interdependencies between geospatial features, seismic ground failures, and building damage, as well as DPMs. Geospatial features provide physical insights for estimating ground failure occurrence while DPMs contain event-specific surface change observations. This physics-informed causal graph incorporates these variables with complex physical relationships in one holistic Bayesian updating scheme to effectively fuse information from both geospatial models and remote sensing data. This framework is scalable and flexible enough to deal with highly complex multi-hazard combinations. We then develop a stochastic variational inference algorithm to jointly update the intractable posterior probabilities of unobserved landslides, liquefaction, and building damage at different locations efficiently. In addition, a local graphical model pruning algorithm is presented to reduce the computational cost of large-scale seismic ground failure estimation. We apply this framework to the September 2018 Hokkaido Iburi-Tobu, Japan (M6.6) earthquake and January 2020 Southwest Puerto Rico (M6.4) earthquake to evaluate the performance of our algorithm.
READ FULL TEXT