Bayesian Synthetic Likelihood

05/09/2023
by   David T. Frazier, et al.
0

Bayesian statistics is concerned with conducting posterior inference for the unknown quantities in a given statistical model. Conventional Bayesian inference requires the specification of a probabilistic model for the observed data, and the construction of the resulting likelihood function. However, sometimes the model is so complicated that evaluation of the likelihood is infeasible, which renders exact Bayesian inference impossible. Bayesian synthetic likelihood (BSL) is a posterior approximation procedure that can be used to conduct inference in situations where the likelihood is intractable, but where simulation from the model is straightforward. In this entry, we give a high-level presentation of BSL, and its extensions aimed at delivering scalable and robust posterior inferences.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset