Bayesian Robustness: A Nonasymptotic Viewpoint

07/27/2019
by   Kush Bhatia, et al.
18

We study the problem of robustly estimating the posterior distribution for the setting where observed data can be contaminated with potentially adversarial outliers. We propose Rob-ULA, a robust variant of the Unadjusted Langevin Algorithm (ULA), and provide a finite-sample analysis of its sampling distribution. In particular, we show that after T= Õ(d/ε_acc) iterations, we can sample from p_T such that dist(p_T, p^*) ≤ε_acc + Õ(ϵ), where ϵ is the fraction of corruptions. We corroborate our theoretical analysis with experiments on both synthetic and real-world data sets for mean estimation, regression and binary classification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset