Bayesian Regression Approach for Building and Stacking Predictive Models in Time Series Analytics

by   Bohdan M. Pavlyshenko, et al.

The paper describes the use of Bayesian regression for building time series models and stacking different predictive models for time series. Using Bayesian regression for time series modeling with nonlinear trend was analyzed. This approach makes it possible to estimate an uncertainty of time series prediction and calculate value at risk characteristics. A hierarchical model for time series using Bayesian regression has been considered. In this approach, one set of parameters is the same for all data samples, other parameters can be different for different groups of data samples. Such an approach allows using this model in the case of short historical data for specified time series, e.g. in the case of new stores or new products in the sales prediction problem. In the study of predictive models stacking, the models ARIMA, Neural Network, Random Forest, Extra Tree were used for the prediction on the first level of model ensemble. On the second level, time series predictions of these models on the validation set were used for stacking by Bayesian regression. This approach gives distributions for regression coefficients of these models. It makes it possible to estimate the uncertainty contributed by each model to stacking result. The information about these distributions allows us to select an optimal set of stacking models, taking into account the domain knowledge. The probabilistic approach for stacking predictive models allows us to make risk assessment for the predictions that are important in a decision-making process.


page 1

page 2

page 3

page 4


Directed Time Series Regression for Control

We propose directed time series regression, a new approach to estimating...

Time Series Prediction under Distribution Shift using Differentiable Forgetting

Time series prediction is often complicated by distribution shift which ...

Forming Predictive Features of Tweets for Decision-Making Support

The article describes the approaches for forming different predictive fe...

KnitCity: a machine learning-based, game-theoretical framework for prediction assessment and seismic risk policy design

Knitted fabric exhibits avalanche-like events when deformed: by analogy ...

Automatic Model Building in GEFCom 2017 Qualifying Match

The Tangent Works team participated in GEFCom 2017 to test its automatic...

Fault detection and diagnosis of batch process using dynamic ARMA-based control charts

A wide range of approaches for batch processes monitoring can be found i...

Implicit Copulas: An Overview

Implicit copulas are the most common copula choice for modeling dependen...

Please sign up or login with your details

Forgot password? Click here to reset