Bayesian Persuasion with Sequential Games

08/02/2019 ∙ by Andrea Celli, et al. ∙ 0

We study an information-structure design problem (a.k.a. persuasion) with a single sender and multiple receivers with actions of a priori unknown types, independently drawn from action-specific marginal distributions. As in the standard Bayesian persuasion model, the sender has access to additional information regarding the action types, which she can exploit when committing to a (noisy) signaling scheme through which she sends a private signal to each receiver. The novelty of our model is in considering the case where the receivers interact in a sequential game with imperfect information, with utilities depending on the game outcome and the realized action types. After formalizing the notions of ex ante and ex interim persuasiveness (which differ in the time at which the receivers commit to following the sender's signaling scheme), we investigate the continuous optimization problem of computing a signaling scheme which maximizes the sender's expected revenue. We show that computing an optimal ex ante persuasive signaling scheme is NP-hard when there are three or more receivers. In contrast with previous hardness results for ex interim persuasion, we show that, for games with two receivers, an optimal ex ante persuasive signaling scheme can be computed in polynomial time thanks to a novel algorithm based on the ellipsoid method which we propose.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.