Bayesian optimal designs for dose-response curves with common parameters

11/15/2017
by   Kirsten Schorning, et al.
0

The issue of determining not only an adequate dose but also a dosing frequency of a drug arises frequently in Phase II clinical trials. This results in the comparison of models which have some parameters in common. Planning such studies based on Bayesian optimal designs offers robustness to our conclusions since these designs, unlike locally optimal designs, are efficient even if the parameters are misspecified. In this paper we develop approximate design theory for Bayesian D-optimality for nonlinear regression models with common parameters and investigate the cases of common location or common location and scale parameters separately. Analytical characterisations of saturated Bayesian D-optimal designs are derived for frequently used dose-response models and the advantages of our results are illustrated via a numerical investigation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset