Bayesian Nonparametric Erlang Mixture Modeling for Survival Analysis

11/16/2022
by   Yunzhe Li, et al.
0

We develop a flexible Erlang mixture model for survival analysis. The model for the survival density is built from a structured mixture of Erlang densities, mixing on the integer shape parameter with a common scale parameter. The mixture weights are constructed through increments of a distribution function on the positive real line, which is assigned a Dirichlet process prior. The model has a relatively simple structure, balancing flexibility with efficient posterior computation. Moreover, it implies a mixture representation for the hazard function that involves time-dependent mixture weights, thus offering a general approach to hazard estimation. We extend the model to handle survival responses corresponding to multiple experimental groups, using a dependent Dirichlet process prior for the group-specific distributions that define the mixture weights. Model properties, prior specification, and posterior simulation are discussed, and the methodology is illustrated with synthetic and real data examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset