Bayesian inference under model misspecification using transport-Lagrangian distances: an application to seismic inversion

05/14/2021
by   Andrea Scarinci, et al.
0

Model misspecification constitutes a major obstacle to reliable inference in many inverse problems. Inverse problems in seismology, for example, are particularly affected by misspecification of wave propagation velocities. In this paper, we focus on a specific seismic inverse problem - full-waveform moment tensor inversion - and develop a Bayesian framework that seeks robustness to velocity misspecification. A novel element of our framework is the use of transport-Lagrangian (TL) distances between observed and model predicted waveforms to specify a loss function, and the use of this loss to define a generalized belief update via a Gibbs posterior. The TL distance naturally disregards certain features of the data that are more sensitive to model misspecification, and therefore produces less biased or dispersed posterior distributions in this setting. To make the latter notion precise, we use several diagnostics to assess the quality of inference and uncertainty quantification, i.e., continuous rank probability scores and rank histograms. We interpret these diagnostics in the Bayesian setting and compare the results to those obtained using more typical Gaussian noise models and squared-error loss, under various scenarios of misspecification. Finally, we discuss potential generalizability of the proposed framework to a broader class of inverse problems affected by model misspecification.

READ FULL TEXT

page 28

page 30

research
10/13/2022

Probabilistic Approach to Parameteric Inverse Problems Using Gibbs Posteriors

We propose a general framework for obtaining probabilistic solutions to ...
research
07/02/2019

Adaptive particle-based approximations of the Gibbs posterior for inverse problems

In this work, we adopt a general framework based on the Gibbs posterior ...
research
07/31/2020

Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors

Bayesian inference and uncertainty quantification in a general class of ...
research
04/07/2020

Stability of Gibbs Posteriors from the Wasserstein Loss for Bayesian Full Waveform Inversion

Recently, the Wasserstein loss function has been proven to be effective ...
research
08/10/2023

Inconsistency and Acausality of Model Selection in Bayesian Inverse Problems

Bayesian inference paradigms are regarded as powerful tools for solution...
research
02/08/2021

WOMBAT: A fully Bayesian global flux-inversion framework

WOMBAT (the WOllongong Methodology for Bayesian Assimilation of Trace-ga...
research
12/30/2022

Posterior sampling with CNN-based, Plug-and-Play regularization with applications to Post-Stack Seismic Inversion

Uncertainty quantification is crucial to inverse problems, as it could p...

Please sign up or login with your details

Forgot password? Click here to reset