Bayesian inference of an uncertain generalized diffusion operator

05/05/2021
by   Teresa Portone, et al.
0

This paper defines a novel Bayesian inverse problem to infer an infinite-dimensional uncertain operator appearing in a differential equation, whose action on an observable state variable affects its dynamics. Inference is made tractable by parametrizing the operator using its eigendecomposition. The plausibility of operator inference in the sparse data regime is explored in terms of an uncertain, generalized diffusion operator appearing in an evolution equation for a contaminant's transport through a heterogeneous porous medium. Sparse data are augmented with prior information through the imposition of deterministic constraints on the eigendecomposition and the use of qualitative information about the system in the definition of the prior distribution. Limited observations of the state variable's evolution are used as data for inference, and the dependence on the solution of the inverse problem is studied as a function of the frequency of observations, as well as on whether or not the data is collected as a spatial or time series.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset