Bayesian Inference of a Dependent Competing Risk Data
Analysis of competing risks data plays an important role in the lifetime data analysis. Recently Feizjavadian and Hashemi (Computational Statistics and Data Analysis, vol. 82, 19-34, 2015) provided a classical inference of a competing risks data set using four-parameter Marshall-Olkin bivariate Weibull distribution when the failure of an unit at a particular time point can happen due to more than one cause. The aim of this paper is to provide the Bayesian analysis of the same model based on a very flexible Gamma-Dirichlet prior on the scale parameters. It is observed that the Bayesian inference has certain advantages over the classical inference in this case. We provide the Bayes estimates of the unknown parameters and the associated highest posterior density credible intervals based on Gibbs sampling technique. We further consider the Bayesian inference of the model parameters assuming partially ordered Gamma-Dirichlet prior on the scale parameters when one cause is more severe than the other cause. We have extended the results for different censoring schemes also.
READ FULL TEXT