Bayesian functional graphical models

08/11/2021
by   Lin Zhang, et al.
0

We develop a Bayesian graphical modeling framework for functional data for correlated multivariate random variables observed over a continuous domain. Our method leads to graphical Markov models for functional data which allows the graphs to vary over the functional domain. The model involves estimation of graphical models that evolve functionally in a nonparametric fashion while accounting for within-functional correlations and borrowing strength across functional positions so contiguous locations are encouraged but not forced to have similar graph structure and edge strength. We utilize a strategy that combines nonparametric basis function modeling with modified Bayesian graphical regularization techniques, which induces a new class of hypoexponential normal scale mixture distributions that not only leads to adaptively shrunken estimators of the conditional cross-covariance but also facilitates a thorough theoretical investigation of the shrinkage properties. Our approach scales up to large functional datasets collected on a fine grid. We show through simulations and real data analysis that the Bayesian functional graphical model can efficiently reconstruct the functionally-evolving graphical models by accounting for within-function correlations.

READ FULL TEXT

page 21

page 34

page 37

10/11/2021

Bayesian Regularization for Functional Graphical Models

Graphical models, used to express conditional dependence between random ...
02/14/2012

Learning mixed graphical models from data with p larger than n

Structure learning of Gaussian graphical models is an extensively studie...
09/13/2022

On the Relationship between Graphical Gaussian Processes and Functional Gaussian Graphical Models

Multivariate functional or spatial data are commonly analysed using mult...
01/23/2021

Bayesian Edge Regression in Undirected Graphical Models to Characterize Interpatient Heterogeneity in Cancer

Graphical models are commonly used to discover associations within gene ...
05/04/2019

Learning Functional Dependencies with Sparse Regression

We study the problem of discovering functional dependencies (FD) from a ...
03/22/2021

Functional graphical model for spectrometric data analysis

Motivated by the analysis of spectrographic data, we introduce a functio...
01/04/2012

Sparse Nonparametric Graphical Models

We present some nonparametric methods for graphical modeling. In the dis...