Bayesian data selection

09/06/2021 ∙ by Eli N. Weinstein, et al. ∙ 0

Insights into complex, high-dimensional data can be obtained by discovering features of the data that match or do not match a model of interest. To formalize this task, we introduce the "data selection" problem: finding a lower-dimensional statistic - such as a subset of variables - that is well fit by a given parametric model of interest. A fully Bayesian approach to data selection would be to parametrically model the value of the statistic, nonparametrically model the remaining "background" components of the data, and perform standard Bayesian model selection for the choice of statistic. However, fitting a nonparametric model to high-dimensional data tends to be highly inefficient, statistically and computationally. We propose a novel score for performing both data selection and model selection, the "Stein volume criterion", that takes the form of a generalized marginal likelihood with a kernelized Stein discrepancy in place of the Kullback-Leibler divergence. The Stein volume criterion does not require one to fit or even specify a nonparametric background model, making it straightforward to compute - in many cases it is as simple as fitting the parametric model of interest with an alternative objective function. We prove that the Stein volume criterion is consistent for both data selection and model selection, and we establish consistency and asymptotic normality (Bernstein-von Mises) of the corresponding generalized posterior on parameters. We validate our method in simulation and apply it to the analysis of single-cell RNA sequencing datasets using probabilistic principal components analysis and a spin glass model of gene regulation.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 31

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.