DeepAI AI Chat
Log In Sign Up

Bayesian Combinatorial Multi-Study Factor Analysis

07/24/2020
by   Isabella N Grabski, et al.
0

Analyzing multiple studies allows leveraging data from a range of sources and populations, but until recently, there have been limited methodologies to approach the joint unsupervised analysis of multiple high-dimensional studies. A recent method, Bayesian Multi-Study Factor Analysis (BMSFA), identifies latent factors common to all studies, as well as latent factors specific to individual studies. However, BMSFA does not allow for partially shared factors, i.e. latent factors shared by more than one but less than all studies. We extend BMSFA by introducing a new method, Tetris, for Bayesian combinatorial multi-study factor analysis, which identifies latent factors that can be shared by any combination of studies. We model the subsets of studies that share latent factors with an Indian Buffet Process. We test our method with an extensive range of simulations, and showcase its utility not only in dimension reduction but also in covariance estimation. Finally, we apply Tetris to high-dimensional gene expression datasets to identify patterns in breast cancer gene expression, both within and across known classes defined by germline mutations.

READ FULL TEXT

page 18

page 22

06/26/2018

Bayesian Multi-study Factor Analysis for High-throughput Biological Data

This paper presents a new modeling strategy for joint unsupervised analy...
10/07/2019

Perturbed factor analysis: Improving generalizability across studies

Factor analysis is routinely used for dimensionality reduction. However,...
05/09/2011

Order-preserving factor analysis (OPFA)

We present a novel factor analysis method that can be applied to the dis...
05/06/2023

Inferring Covariance Structure from Multiple Data Sources via Subspace Factor Analysis

Factor analysis provides a canonical framework for imposing lower-dimens...
04/20/2018

Assessing Combinatorial Design for Analyzing System Performance of a Computer Network

Generally, combinatorial design concerns with the arrangement of a finit...
02/23/2015

Rectified Factor Networks

We propose rectified factor networks (RFNs) to efficiently construct ver...
10/12/2021

Nonnegative spatial factorization

Gaussian processes are widely used for the analysis of spatial data due ...