BAXTER: Bi-modal Aerial-Terrestrial Hybrid Vehicle for Long-endurance Versatile Mobility: Preprint Version

by   Hyungho Chris Choi, et al.

Unmanned aerial vehicles are rapidly evolving within the field of robotics. However, their performance is often limited by payload capacity, operational time, and robustness to impact and collision. These limitations of aerial vehicles become more acute for missions in challenging environments such as subterranean structures which may require extended autonomous operation in confined spaces. While software solutions for aerial robots are developing rapidly, improvements to hardware are critical to applying advanced planners and algorithms in large and dangerous environments where the short range and high susceptibility to collisions of most modern aerial robots make applications in realistic subterranean missions infeasible. To provide such hardware capabilities, one needs to design and implement a hardware solution that takes into the account the Size, Weight, and Power (SWaP) constraints. This work focuses on providing a robust and versatile hybrid platform that improves payload capacity, operation time, endurance, and versatility. The Bi-modal Aerial and Terrestrial hybrid vehicle (BAXTER) is a solution that provides two modes of operation, aerial and terrestrial. BAXTER employs two novel hardware mechanisms: the M-Suspension and the Decoupled Transmission which together provide resilience during landing and crashes and efficient terrestrial operation. Extensive flight tests were conducted to characterize the vehicle's capabilities, including robustness and endurance. Additionally, we propose Agile Mode Transfer (AMT), a transition from aerial to terrestrial operation that seeks to minimize impulses during impact to the ground which is a quick and simple transition process that exploits BAXTER's resilience to impact.


page 2

page 10


Design and control of a collision-resilient aerial vehicle with an icosahedron tensegrity structure

We present the tensegrity aerial vehicle, a design of collision-resilien...

Soft Hybrid Aerial Vehicle via Bistable Mechanism

Unmanned aerial vehicles have been demonstrated successfully in a variet...

A collision-resilient aerial vehicle with icosahedron tensegrity structure

Aerial vehicles with collision resilience can operate with more confiden...

BogieCopter: A Multi-Modal Aerial-Ground Vehicle for Long-Endurance Inspection Applications

The use of Micro Aerial Vehicles (MAVs) for inspection and surveillance ...

TIE: An Autonomous and Adaptive Terrestrial-Aerial Quadrotor

This letter presents a fully autonomous robot system that possesses both...

Stability and Robustness Analysis of Plug-Pulling using an Aerial Manipulator

In this paper, an autonomous aerial manipulation task of pulling a plug ...

Ceiling Effects for Hybrid Aerial-Surface Locomotion of Small Rotorcraft

As platform size is reduced, the flight of aerial robots becomes increas...

Please sign up or login with your details

Forgot password? Click here to reset