Barankin Vector Locally Best Unbiased Estimates

06/30/2017
by   Bruno Cernuschi-Frias, et al.
0

The Barankin bound is generalized to the vector case in the mean square error sense. Necessary and sufficient conditions are obtained to achieve the lower bound. To obtain the result, a simple finite dimensional real vector valued generalization of the Riesz representation theorem for Hilbert spaces is given. The bound has the form of a linear matrix inequality where the covariances of any unbiased estimator, if these exist, are lower bounded by matrices depending only on the parametrized probability distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro