Bandits for Online Calibration: An Application to Content Moderation on Social Media Platforms

11/11/2022
by   Vashist Avadhanula, et al.
0

We describe the current content moderation strategy employed by Meta to remove policy-violating content from its platforms. Meta relies on both handcrafted and learned risk models to flag potentially violating content for human review. Our approach aggregates these risk models into a single ranking score, calibrating them to prioritize more reliable risk models. A key challenge is that violation trends change over time, affecting which risk models are most reliable. Our system additionally handles production challenges such as changing risk models and novel risk models. We use a contextual bandit to update the calibration in response to such trends. Our approach increases Meta's top-line metric for measuring the effectiveness of its content moderation strategy by 13

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset