Bandits for BMO Functions

07/17/2020 ∙ by Tianyu Wang, et al. ∙ 0

We study the bandit problem where the underlying expected reward is a Bounded Mean Oscillation (BMO) function. BMO functions are allowed to be discontinuous and unbounded, and are useful in modeling signals with infinities in the do-main. We develop a toolset for BMO bandits, and provide an algorithm that can achieve poly-log δ-regret – a regret measured against an arm that is optimal after removing a δ-sized portion of the arm space.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.