Balancedness and coboundaries in symbolic systems

10/17/2018
by   Valérie Berthé, et al.
0

This paper studies balancedness for infinite words and subshifts, both for letters and factors. Balancedness is a measure of disorder that amounts to strong convergence properties for frequencies. It measures the difference between the numbers of occurrences of a given word in factors of the same length. We focus on two families of words, namely dendric words and words generated by substitutions. The family of dendric words includes Sturmian and Arnoux-Rauzy words, as well as codings of regular interval exchanges. We prove that dendric words are balanced on letters if and only if they are balanced on words. In the substitutive case, we stress the role played by the existence of coboundaries taking rational values and show simple criteria when frequencies take rational values for exhibiting imbalancedness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset