Bag of Tricks for Out-of-Distribution Generalization

08/23/2022
by   Zining Chen, et al.
0

Recently, out-of-distribution (OOD) generalization has attracted attention to the robustness and generalization ability of deep learning based models, and accordingly, many strategies have been made to address different aspects related to this issue. However, most existing algorithms for OOD generalization are complicated and specifically designed for certain dataset. To alleviate this problem, nicochallenge-2022 provides NICO++, a large-scale dataset with diverse context information. In this paper, based on systematic analysis of different schemes on NICO++ dataset, we propose a simple but effective learning framework via coupling bag of tricks, including multi-objective framework design, data augmentations, training and inference strategies. Our algorithm is memory-efficient and easily-equipped, without complicated modules and does not require for large pre-trained models. It achieves an excellent performance with Top-1 accuracy of 88.16 ranks 1st in domain generalization task of nicochallenge-2022.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset