Bad-Data Sequence Detection for Power System State Estimation via ICA-GAN

12/09/2020
by   Kursat Rasim Mestav, et al.
0

A deep learning approach to the detection of bad-data sequences in power systems is proposed. The bad-data model is nonparametric that includes arbitrary natural and adversarial data anomalies. No historical samples of data anomaly are assumed. The probability distribution of data in anomaly-free system operations is also non-parametric, unknown, but with historical training samples. A uniformity test is proposed based on a generative adversarial network (GAN) that extracts independent components of the measurement sequence via independent component analysis (ICA). Referred to as ICA-GAN, the developed approach to bad-data sequence detection can be applied at the individual sensor level or jointly at the system level. Numerical results demonstrate significant improvement over the state-of-the-art solutions for a variety of bad-data cases using PMU measurements from the EPFL smart grid testbed and that from the synthetic Northern Texas grid.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset