Backward Curriculum Reinforcement Learning

12/29/2022
by   KyungMin Ko, et al.
0

The current reinforcement learning algorithm uses forward-generated trajectories to train the agent. The forward-generated trajectories give the agent little guidance, so the agent can explore as much as possible. While the appreciation of reinforcement learning comes from enough exploration, this gives the trade-off of losing sample efficiency. The sampling efficiency is an important factor that decides the performance of the algorithm. Past tasks use reward shaping techniques and changing the structure of the network to increase sample efficiency, however these methods require many steps to implement. In this work, we propose novel reverse curriculum reinforcement learning. Reverse curriculum learning starts training the agent using the backward trajectory of the episode rather than the original forward trajectory. This gives the agent a strong reward signal, so the agent can learn in a more sample-efficient manner. Moreover, our method only requires a minor change in algorithm, which is reversing the order of trajectory before training the agent. Therefore, it can be simply applied to any state-of-art algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset