Backpropagating through Structured Argmax using a SPIGOT

05/12/2018 ∙ by Hao Peng, et al. ∙ 0

We introduce the structured projection of intermediate gradients optimization technique (SPIGOT), a new method for backpropagating through neural networks that include hard-decision structured predictions (e.g., parsing) in intermediate layers. SPIGOT requires no marginal inference, unlike structured attention networks (Kim et al., 2017) and some reinforcement learning-inspired solutions (Yogatama et al., 2017). Like so-called straight-through estimators (Hinton, 2012), SPIGOT defines gradient-like quantities associated with intermediate nondifferentiable operations, allowing backpropagation before and after them; SPIGOT's proxy aims to ensure that, after a parameter update, the intermediate structure will remain well-formed. We experiment on two structured NLP pipelines: syntactic-then-semantic dependency parsing, and semantic parsing followed by sentiment classification. We show that training with SPIGOT leads to a larger improvement on the downstream task than a modularly-trained pipeline, the straight-through estimator, and structured attention, reaching a new state of the art on semantic dependency parsing.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.