Backdoors in Neural Models of Source Code

06/11/2020 ∙ by Goutham Ramakrishnan, et al. ∙ 0

Deep neural networks are vulnerable to a range of adversaries. A particularly pernicious class of vulnerabilities are backdoors, where model predictions diverge in the presence of subtle triggers in inputs. An attacker can implant a backdoor by poisoning the training data to yield a desired target prediction on triggered inputs. We study backdoors in the context of deep-learning for source code. (1) We define a range of backdoor classes for source-code tasks and show how to poison a dataset to install such backdoors. (2) We adapt and improve recent algorithms from robust statistics for our setting, showing that backdoors leave a spectral signature in the learned representation of source code, thus enabling detection of poisoned data. (3) We conduct a thorough evaluation on different architectures and languages, showing the ease of injecting backdoors and our ability to eliminate them.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.