Avoiding Negative Side Effects due to Incomplete Knowledge of AI Systems

08/24/2020 ∙ by Sandhya Saisubramanian, et al. ∙ 10

Autonomous agents acting in the real-world often operate based on models that ignore certain aspects of the environment. The incompleteness of any given model—handcrafted or machine acquired—is inevitable due to practical limitations of any modeling technique for complex real-world settings. Due to the limited fidelity of its model, an agent's actions may have unexpected, undesirable consequences during execution. Learning to recognize and avoid such negative side effects of the agent's actions is critical to improving the safety and reliability of autonomous systems. This emerging research topic is attracting increased attention due to the increased deployment of AI systems and their broad societal impacts. This article provides a comprehensive overview of different forms of negative side effects and the recent research efforts to address them. We identify key characteristics of negative side effects, highlight the challenges in avoiding negative side effects, and discuss recently developed approaches, contrasting their benefits and limitations. We conclude with a discussion of open questions and suggestions for future research directions.



There are no comments yet.


page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.