Auxiliary Network: Scalable and agile online learning for dynamic system with inconsistently available inputs

08/26/2020
by   Rohit Agarwal, et al.
7

Streaming classification methods assume the number of input features is fixed and always received. But in many real-world scenarios demand is some input features are reliable while others are unreliable or inconsistent. In this paper, we propose a novel deep learning-based model called Auxiliary Network (Aux-Net), which is scalable and agile. It employs a weighted ensemble of classifiers to give a final outcome. The Aux-Net model is based on the hedging algorithm and online gradient descent. It employs a model of varying depth in an online setting using single pass learning. Aux-Net is a foundational work towards scalable neural network model for a dynamic complex environment requiring ad hoc or inconsistent input data. The efficacy of Aux-Net is shown on public dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset