Autoregressive Convolutional Recurrent Neural Network for Univariate and Multivariate Time Series Prediction

03/06/2019
by   Matteo Maggiolo, et al.
0

Time Series forecasting (univariate and multivariate) is a problem of high complexity due the different patterns that have to be detected in the input, ranging from high to low frequencies ones. In this paper we propose a new model for timeseries prediction that utilizes convolutional layers for feature extraction, a recurrent encoder and a linear autoregressive component. We motivate the model and we test and compare it against a baseline of widely used existing architectures for univariate and multivariate timeseries. The proposed model appears to outperform the baselines in almost every case of the multivariate timeseries datasets, in some cases even with 50 shows the strengths of such a hybrid architecture in complex timeseries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset