Automatically Learning Fallback Strategies with Model-Free Reinforcement Learning in Safety-Critical Driving Scenarios

04/11/2022
by   Ugo Lecerf, et al.
0

When learning to behave in a stochastic environment where safety is critical, such as driving a vehicle in traffic, it is natural for human drivers to plan fallback strategies as a backup to use if ever there is an unexpected change in the environment. Knowing to expect the unexpected, and planning for such outcomes, increases our capability for being robust to unseen scenarios and may help prevent catastrophic failures. Control of Autonomous Vehicles (AVs) has a particular interest in knowing when and how to use fallback strategies in the interest of safety. Due to imperfect information available to an AV about its environment, it is important to have alternate strategies at the ready which might not have been deduced from the original training data distribution. In this paper we present a principled approach for a model-free Reinforcement Learning (RL) agent to capture multiple modes of behaviour in an environment. We introduce an extra pseudo-reward term to the reward model, to encourage exploration to areas of state-space different from areas privileged by the optimal policy. We base this reward term on a distance metric between the trajectories of agents, in order to force policies to focus on different areas of state-space than the initial exploring agent. Throughout the paper, we refer to this particular training paradigm as learning fallback strategies. We apply this method to an autonomous driving scenario, and show that we are able to learn useful policies that would have otherwise been missed out on during training, and unavailable to use when executing the control algorithm.

READ FULL TEXT

page 1

page 7

research
06/05/2023

Risk-Aware Reward Shaping of Reinforcement Learning Agents for Autonomous Driving

Reinforcement learning (RL) is an effective approach to motion planning ...
research
08/15/2020

Cautious Adaptation For Reinforcement Learning in Safety-Critical Settings

Reinforcement learning (RL) in real-world safety-critical target setting...
research
04/15/2019

Reinforcement Learning with Probabilistic Guarantees for Autonomous Driving

Designing reliable decision strategies for autonomous urban driving is c...
research
10/13/2021

Offline Reinforcement Learning for Autonomous Driving with Safety and Exploration Enhancement

Reinforcement learning (RL) is a powerful data-driven control method tha...
research
07/01/2018

Learning to Drive in a Day

We demonstrate the first application of deep reinforcement learning to a...
research
11/10/2021

Spatially and Seamlessly Hierarchical Reinforcement Learning for State Space and Policy space in Autonomous Driving

Despite advances in hierarchical reinforcement learning, its application...
research
09/25/2020

A Modeled Approach for Online Adversarial Test of Operational Vehicle Safety

The scenario-based testing of operational vehicle safety presents a set ...

Please sign up or login with your details

Forgot password? Click here to reset