Automatic Speech Recognition for Humanitarian Applications in Somali

07/23/2018
by   Raghav Menon, et al.
0

We present our first efforts in building an automatic speech recognition system for Somali, an under-resourced language, using 1.57 hrs of annotated speech for acoustic model training. The system is part of an ongoing effort by the United Nations (UN) to implement keyword spotting systems supporting humanitarian relief programmes in parts of Africa where languages are severely under-resourced. We evaluate several types of acoustic model, including recent neural architectures. Language model data augmentation using a combination of recurrent neural networks (RNN) and long short-term memory neural networks (LSTMs) as well as the perturbation of acoustic data are also considered. We find that both types of data augmentation are beneficial to performance, with our best system using a combination of convolutional neural networks (CNNs), time-delay neural networks (TDNNs) and bi-directional long short term memory (BLSTMs) to achieve a word error rate of 53.75

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset