Automatic Safety Helmet Wearing Detection

02/01/2018
by   Kang Li, et al.
0

Surveillance is essential for the safety of power substation. The detection of whether wearing safety helmets or not for perambulatory workers is the key component of overall intelligent surveillance system in power substation. In this paper, a novel and practical safety helmet detection framework based on computer vision, machine learning and image processing is proposed. In order to ascertain motion objects in power substation, the ViBe background modelling algorithm is employed. Moreover, based on the result of motion objects segmentation, real-time human classification framework C4 is applied to locate pedestrian in power substation accurately and quickly. Finally, according to the result of pedestrian detection, the safety helmet wearing detection is implemented using the head location, the color space transformation and the color feature discrimination. Extensive compelling experimental results in power substation illustrate the efficiency and effectiveness of the proposed framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset