Automatic Group Cohesiveness Detection With Multi-modal Features

10/02/2019
by   Bin Zhu, et al.
0

Group cohesiveness is a compelling and often studied composition in group dynamics and group performance. The enormous number of web images of groups of people can be used to develop an effective method to detect group cohesiveness. This paper introduces an automatic group cohesiveness prediction method for the 7th Emotion Recognition in the Wild (EmotiW 2019) Grand Challenge in the category of Group-based Cohesion Prediction. The task is to predict the cohesive level for a group of people in images. To tackle this problem, a hybrid network including regression models which are separately trained on face features, skeleton features, and scene features is proposed. Predicted regression values, corresponding to each feature, are fused for the final cohesive intensity. Experimental results demonstrate that the proposed hybrid network is effective and makes promising improvements. A mean squared error (MSE) of 0.444 is achieved on the testing sets which outperforms the baseline MSE of 0.5.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset