Automatic Financial Trading Agent for Low-risk Portfolio Management using Deep Reinforcement Learning

09/07/2019 ∙ by Wonsup Shin, et al. ∙ 0

The autonomous trading agent is one of the most actively studied areas of artificial intelligence to solve the capital market portfolio management problem. The two primary goals of the portfolio management problem are maximizing profit and restrainting risk. However, most approaches to this problem solely take account of maximizing returns. Therefore, this paper proposes a deep reinforcement learning based trading agent that can manage the portfolio considering not only profit maximization but also risk restraint. We also propose a new target policy to allow the trading agent to learn to prefer low-risk actions. The new target policy can be reflected in the update by adjusting the greediness for the optimal action through the hyper parameter. The proposed trading agent verifies the performance through the data of the cryptocurrency market. The Cryptocurrency market is the best test-ground for testing our trading agents because of the huge amount of data accumulated every minute and the market volatility is extremely large. As a experimental result, during the test period, our agents achieved a return of 1800 least risky investment strategy among the existing methods. And, another experiment shows that the agent can maintain robust generalized performance even if market volatility is large or training period is short.



There are no comments yet.


page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.