Automated Stroke Rehabilitation Assessment using Wearable Accelerometers in Free-Living Environments

09/17/2020 ∙ by Xi Chen, et al. ∙ 0

Stroke is known as a major global health problem, and for stroke survivors it is key to monitor the recovery levels. However, traditional stroke rehabilitation assessment methods (such as the popular clinical assessment) can be subjective and expensive, and it is also less convenient for patients to visit clinics in a high frequency. To address this issue, in this work based on wearable sensing and machine learning techniques, we developed an automated system that can predict the assessment score in an objective and continues manner. With wrist-worn sensors, accelerometer data was collected from 59 stroke survivors in free-living environments for a duration of 8 weeks, and we aim to map the week-wise accelerometer data (3 days per week) to the assessment score by developing signal processing and predictive model pipeline. To achieve this, we proposed two new features, which can encode the rehabilitation information from both paralysed/non-paralysed sides while suppressing the high-level noises such as irrelevant daily activities. We further developed the longitudinal mixed-effects model with Gaussian process prior (LMGP), which can model the random effects caused by different subjects and time slots (during the 8 weeks). Comprehensive experiments were conducted to evaluate our system on both acute and chronic patients, and the results suggested its effectiveness.



There are no comments yet.


page 12

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.