Automated segmentaiton and classification of arterioles and venules using Cascading Dilated Convolutional Neural Networks
The change of retinal vasculature is an early sign of many vascular and systematic diseases, such as diabetes and hypertension. Different behaviors of retinal arterioles and venules form an important metric to measure the disease severity. Therefore, an accurate classification of arterioles and venules is of great necessity. In this work, we propose a novel architecture of deep convolutional neural network for segmenting and classifying arterioles and venules on retinal fundus images. This network takes the original color fundus image as inputs and multi-class labels as outputs. We adopt the encoding-decoding structure (Unet) as the backbone network of our proposed model. To improve the classification accuracy, we develop a special encoding path that couples InceptionV4 modules and Cascading Dilated Convolutions (CDCs) on top of the backbone network. The model is thus able to extract and fuse high-level semantic features from multi-scale receptive fields. The proposed method has outperformed the previous state-of-the-art method on DRIVE dataset with an accuracy of 0.955 ± 0.002.
READ FULL TEXT