Automated Remote Sensing Forest Inventory Using Satelite Imagery

10/16/2021
by   Abduragim Shtanchaev, et al.
14

For many countries like Russia, Canada, or the USA, a robust and detailed tree species inventory is essential to manage their forests sustainably. Since one can not apply unmanned aerial vehicle (UAV) imagery-based approaches to large-scale forest inventory applications, the utilization of machine learning algorithms on satellite imagery is a rising topic of research. Although satellite imagery quality is relatively low, additional spectral channels provide a sufficient amount of information for tree crown classification tasks. Assuming that tree crowns are detected already, we use embeddings of tree crowns generated by Autoencoders as a data set to train classical Machine Learning algorithms. We compare our Autoencoder (AE) based approach to traditional convolutional neural networks (CNN) end-to-end classifiers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset