Automated Performance Tuning for Highly-Configurable Software Systems

10/03/2020 ∙ by Xue Han, et al. ∙ 0

Performance is an important non-functional aspect of the software requirement. Modern software systems are highly-configurable and misconfigurations may easily cause performance issues. A software system that suffers performance issues may exhibit low program throughput and long response time. However, the sheer size of the configuration space makes it challenging for administrators to manually select and adjust the configuration options to achieve better performance. In this paper, we propose ConfRL, an approach to tune software performance automatically. The key idea of ConfRL is to use reinforcement learning to explore the configuration space by a trial-and-error approach and to use the feedback received from the environment to tune configuration option values to achieve better performance. To reduce the cost of reinforcement learning, ConfRL employs sampling, clustering, and dynamic state reduction techniques to keep states in a large configuration space manageable. Our evaluation of four real-world highly-configurable server programs shows that ConfRL can efficiently and effectively guide software systems to achieve higher long-term performance.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.