Automated Pain Detection from Facial Expressions using FACS: A Review

11/13/2018
by   Zhanli Chen, et al.
0

Facial pain expression is an important modality for assessing pain, especially when the patient's verbal ability to communicate is impaired. The facial muscle-based action units (AUs), which are defined by the Facial Action Coding System (FACS), have been widely studied and are highly reliable as a method for detecting facial expressions (FE) including valid detection of pain. Unfortunately, FACS coding by humans is a very time-consuming task that makes its clinical use prohibitive. Significant progress on automated facial expression recognition (AFER) has led to its numerous successful applications in FACS-based affective computing problems. However, only a handful of studies have been reported on automated pain detection (APD), and its application in clinical settings is still far from a reality. In this paper, we review the progress in research that has contributed to automated pain detection, with focus on 1) the framework-level similarity between spontaneous AFER and APD problems; 2) the evolution of system design including the recent development of deep learning methods; 3) the strategies and considerations in developing a FACS-based pain detection framework from existing research; and 4) introduction of the most relevant databases that are available for AFER and APD studies. We attempt to present key considerations in extending a general AFER framework to an APD framework in clinical settings. In addition, the performance metrics are also highlighted in evaluating an AFER or an APD system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset