Autoencoding topology

03/01/2018
by   Eric O. Korman, et al.
0

The problem of learning a manifold structure on a dataset is framed in terms of a generative model, to which we use ideas behind autoencoders (namely adversarial/Wasserstein autoencoders) to fit deep neural networks. From a machine learning perspective, the resulting structure, an atlas of a manifold, may be viewed as a combination of dimensionality reduction and "fuzzy" clustering.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro