AutoDisc: Automatic Distillation Schedule for Large Language Model Compression

05/29/2022
by   Chen Zhang, et al.
6

Driven by the teacher-student paradigm, knowledge distillation is one of the de facto ways for language model compression. Recent studies have uncovered that conventional distillation is less effective when facing a large capacity gap between the teacher and the student, and introduced teacher assistant-based distillation to bridge the gap. As a connection, the scale and the performance of the teacher assistant is crucial for transferring the knowledge from the teacher to the student. However, existing teacher assistant-based methods manually select the scale of the teacher assistant, which fails to identify the teacher assistant with the optimal scale-performance tradeoff. To this end, we propose an Automatic Distillation Schedule (AutoDisc) for large language model compression. In particular, AutoDisc first specifies a set of teacher assistant candidates at different scales with gridding and pruning, and then optimizes all candidates in an once-for-all optimization with two approximations. The best teacher assistant scale is automatically selected according to the scale-performance tradeoff. AutoDisc is evaluated with an extensive set of experiments on a language understanding benchmark GLUE. Experimental results demonstrate the improved performance and applicability of our AutoDisc. We further apply AutoDisc on a language model with over one billion parameters and show the scalability of AutoDisc.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro