Authorship Attribution Using a Neural Network Language Model
In practice, training language models for individual authors is often expensive because of limited data resources. In such cases, Neural Network Language Models (NNLMs), generally outperform the traditional non-parametric N-gram models. Here we investigate the performance of a feed-forward NNLM on an authorship attribution problem, with moderate author set size and relatively limited data. We also consider how the text topics impact performance. Compared with a well-constructed N-gram baseline method with Kneser-Ney smoothing, the proposed method achieves nearly 2:5 author classification accuracy by 3:43 sentences. The performance is very competitive with the state of the art in terms of accuracy and demand on test data. The source code, preprocessed datasets, a detailed description of the methodology and results are available at https://github.com/zge/authorship-attribution.
READ FULL TEXT